The Footprint Principle for Heuristics for Probabilistic Planners
نویسنده
چکیده
Probabilistic back-chaining planners, which use probabilities to represent and reason about uncertainty in the planning domain, typically have a larger search space than their classical counterparts. Therefore heuristics that can reduce their search effectively are even more important. The “footprint” principle leads to a family of heuristics for probabilistic planners produced by attempting to make subsequent refinements to a plan apply to disjoint sets of planning cases. Heuristics derived by this principle are shown to be effective for two probabilistic planners, Buridan and Weaver, which are organised around quite different search techniques. Probabilistic planners are needed that can use more compact representations of uncertainty than those that currently exist, and these planners will depend even more on the footprint principle and others like it.
منابع مشابه
Sequential Monte Carlo in Probabilistic Planning Reachability Heuristics
The current best conformant probabilistic planners encode the problem as a bounded length CSP or SAT problem. While these approaches can find optimal solutions for given plan lengths, they often do not scale for large problems or plan lengths. As has been shown in classical planning, heuristic search outperforms CSP/SAT techniques (especially when a plan length is not given a priori). The probl...
متن کاملSequential Monte Carlo in Probabilistic Planning Reachability Heuristics
The current best conformant probabilistic planners encode the problem as a bounded length CSP or SAT problem. While these approaches can find optimal solutions for given plan lengths, they often do not scale for large problems or plan lengths. As has been shown in classical planning, heuristic search outperforms CSP/SAT techniques (especially when a plan length is not given a priori). The probl...
متن کاملProbabilistic Temporal Planning
Planning research has explored the issues that arise when planning with concurrent and durative actions. Separately, planners that can cope with probabilistic effects have also been created. However, few attempts have been made to combine both probabilistic effects and concurrent durative actions into a single planner. The principal one of which we are aware was targeted at a specific domain. W...
متن کاملAdaptive Strategies for Probabilistic Roadmap Construction
This paper presents an experimental study of prospects for using adaptable local search techniques in probabilistic roadmap based motion planning. The classical PRM approach uses a single fast and simple local planner to build a network representation of the configuration space. Advanced PRM planners utilize heuristic sampling techniques and combine multiple local planners. The planner describe...
متن کاملWorkspace Medial Axis in PRM Planners
Probabilistic roadmap planners have been very successful in path planning for a wide variety of problems, especially applications involving robots with many degrees of freedom. These planners randomly sample the configuration space, building up a roadmap that connects the samples. A major problem is finding valid configurations in tight areas, and many methods have been proposed to more effecti...
متن کامل